Format

Send to

Choose Destination
Eur J Neurosci. 2009 Nov;30(9):1650-7. doi: 10.1111/j.1460-9568.2009.06960.x. Epub 2009 Oct 26.

Food-entrainable circadian oscillators in the brain.

Author information

1
Center for Studies in Behavioral Neurobiology/Groupe de Recherche en Neurobiologie Comportementale, Department of Psychology, Concordia University, SP-244, 7141 Sherbrooke St West, Montreal, QC, Canada.

Abstract

Circadian rhythms in mammalian behaviour and physiology rely on daily oscillations in the expression of canonical clock genes. Circadian rhythms in clock gene expression are observed in the master circadian clock, the suprachiasmatic nucleus but are also observed in many other brain regions that have diverse roles, including influences on motivational and emotional state, learning, hormone release and feeding. Increasingly, important links between circadian rhythms and metabolism are being uncovered. In particular, restricted feeding (RF) schedules which limit food availability to a single meal each day lead to the induction and entrainment of circadian rhythms in food-anticipatory activities in rodents. Food-anticipatory activities include increases in core body temperature, activity and hormone release in the hours leading up to the predictable mealtime. Crucially, RF schedules and the accompanying food-anticipatory activities are also associated with shifts in the daily oscillation of clock gene expression in diverse brain areas involved in feeding, energy balance, learning and memory, and motivation. Moreover, lesions of specific brain nuclei can affect the way rats will respond to RF, but have generally failed to eliminate all food-anticipatory activities. As a consequence, it is likely that a distributed neural system underlies the generation and regulation of food-anticipatory activities under RF. Thus, in the future, we would suggest that a more comprehensive approach should be taken, one that investigates the interactions between multiple circadian oscillators in the brain and body, and starts to report on potential neural systems rather than individual and discrete brain areas.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center