Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1991 Jan 5;266(1):609-14.

Proliferative action of erythropoietin is associated with rapid protein tyrosine phosphorylation in responsive B6SUt.EP cells.

Author information

1
Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802.

Abstract

Erythropoietin is a prime regulator of the growth and terminal differentiation of erythroid blood cells. However, little is understood concerning its molecular mechanism of action. Presently it is shown in the responsive, factor-dependent murine cell line B6SUt.EP that erythropoietin induces the tyrosine phosphorylation of six plasma membrane-associated proteins in a time- and concentration-dependent fashion (i.e. phosphoproteins PY153, PY140, PY100, PY93, PY74, and PY54). Among these, PY153 was prominent. For all proteins, maximal levels of phosphorylation were induced within 3-7 min at low factor concentrations (100-500 pM). These findings establish tyrosine kinase activation as a novel candidate pathway of erythropoietin-induced proliferation. In addition, the tyrosine phosphorylation of six proteins with identical Mr, as well as a Mr 104,000 protein, was induced in B6SUt.EP cells by interleukin 3. In contrast, no induced tyrosine phosphorylation was detectable in the erythropoietin-responsive, leukemic erythroid cell line. Rauscher Red 1, yet proteins of Mr 153,000 and 54,000 were shown to be phosphorylated constitutively at relative levels greater than those observed in B6SUt.EP cells. A possible role for these phosphoproteins in hematopoietic cell transformation is considered.

PMID:
1985918
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center