Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2010 Jan 1;285(1):317-27. doi: 10.1074/jbc.M109.053926. Epub 2009 Oct 26.

Wnt/beta-catenin and retinoic acid receptor signaling pathways interact to regulate chondrocyte function and matrix turnover.

Author information

Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.


Activation of the Wnt/beta-catenin and retinoid signaling pathways is known to tilt cartilage matrix homeostasis toward catabolism. Here, we investigated possible interactions between these pathways. We found that all-trans-retinoic acid (RA) treatment of mouse epiphyseal chondrocytes in culture did increase Wnt/beta-catenin signaling in the absence or presence of exogenous Wnt3a, as revealed by lymphoid enhancer factor/T-cell factor/beta-catenin reporter activity and beta-catenin nuclear accumulation. This stimulation was accompanied by increased gene expression of Wnt proteins and receptors and was inhibited by co-treatment with Dickkopf-related protein-1, an extracellular inhibitor of Wnt/beta-catenin signaling, suggesting that RA modulates Wnt signaling at Wnt cell surface receptor level. RA also enhanced matrix loss triggered by Wnt/beta-catenin signaling, whereas treatment with a retinoid antagonist reduced it. Interestingly, overexpression of retinoic acid receptor gamma (RARgamma) strongly inhibited Wnt/beta-catenin signaling in retinoid-free cultures, whereas small interfering RNA-mediated silencing of endogenous RARgamma expression strongly increased it. Small interfering RNA-mediated silencing of RARalpha or RARbeta had minimal effects. Co-immunoprecipitation and two-hybrid assays indicated that RARgamma interacts with beta-catenin and induces dissociation of beta-catenin from lymphoid enhancer factor in retinoid-free cultures. The N-terminal domain (AF-1) of RARgamma but not the C-terminal domain (AF-2) was required for association with beta-catenin, whereas both AF-1 and AF-2 were necessary for inhibition of beta-catenin transcriptional activity. Taken together, our data indicate that the Wnt and retinoid signaling pathways do interact in chondrocytes, and their cross-talks and cross-regulation play important roles in the regulation of cartilage matrix homeostasis.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center