Send to

Choose Destination
BMC Genomics. 2009 Oct 26;10:495. doi: 10.1186/1471-2164-10-495.

Transcriptome analysis of differentiating trypanosomes reveals the existence of multiple post-transcriptional regulons.

Author information

Zentrum für Molekulare Biologie der Universität Heidelberg, ZMBH-DKFZ Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.



Trypanosome gene expression is regulated almost exclusively at the post-transcriptional level, with mRNA degradation playing a decisive role. When trypanosomes are transferred from the blood of a mammal to the midgut of a Tsetse fly, they transform to procyclic forms: gene expression is reprogrammed, changing the cell surface and switching the mode of energy metabolism. Within the blood, trypanosomes can pre-adapt for Tsetse transmission, becoming growth-arrested stumpy forms. We describe here the transitions in gene expression that occur during differentiation of in-vitro cultured bloodstream forms to procyclic forms.


Some mRNAs showed changes within 30 min of cis-aconitate addition, whereas others responded 12-24 hours later. For the first 12 h after addition of cis-aconitate, cells accumulated at the G1 phase of the cell cycle, and showed decreases in mRNAs required for proliferation, mimicking the changes seen in stumpy forms: many mRNAs needed for ribosomal and flagellar biogenesis showed striking co-regulation. Other mRNAs encoding components of signal transduction pathways and potential regulators were specifically induced only during differentiation. Messenger RNAs encoding proteins required for individual metabolic pathways were often co-regulated.


Trypanosome genes form post-transcriptional regulons in which mRNAs with functions in particular pathways, or encoding components of protein complexes, show almost identical patterns of regulation.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center