Send to

Choose Destination
See comment in PubMed Commons below
Biomaterials. 2010 Feb;31(6):1453-9. doi: 10.1016/j.biomaterials.2009.10.016. Epub 2009 Oct 24.

pH-sensitive carbonate apatite as an intracellular protein transporter.

Author information

Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan.


The transfer of specific proteins into living cells to enable the regulation of cell function or the tracking of the intracellular distribution of proteins is a desirable objective for offering a potential alternative to gene therapy. Here, protein/carbonate apatite complexes were successfully fabricated for intracellular delivery of functional proteins since the carbonate apatite being highly water solubility under an acidic condition could easily be dissolved in endosomes following endocytosis, thus releasing the electrostatically associated proteins in cytoplasm. In this study, we characterized protein/carbonate apatite complexes as an intracellular protein delivery system and we checked intracellular delivery of proteins by carbonate apatite nanoparticles in vitro. Fluorescently-labeled bovine serum albumin as a model protein was effectively delivered into nearly 100% of HeLa cells by the simple addition of protein/carbonate apatite complexes to the cells. Confocal microscopic imaging suggested the endosomal release of protein delivered with carbonate apatite. And intracellularly delivered ss-galactosidase did not lose its enzymatic activity. These results suggested that intracellular delivery system of protein using pH-sensitive carbonate apatite carrier with a very simple procedure will be a highly effective method to the biological and clinical researches.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center