Send to

Choose Destination
Med Dosim. 2009 Winter;34(4):317-22. doi: 10.1016/j.meddos.2008.12.004. Epub 2009 Feb 5.

Evaluation of four volume-based image registration algorithms.

Author information

Department of Radiation Oncology, Rush University Medical Center, Chicago, IL, USA.


We evaluated 4 volume-based automatic image registration algorithms from 2 commercially available treatment planning systems (Philips Syntegra and BrainScan). The algorithms based on cross correlation (CC), local correlation (LC), normalized mutual information (NMI), and BrainScan mutual information (BSMI) were evaluated with: (1) the synthetic computed tomography (CT) images, (2) the CT and magnetic resonance (MR) phantom images, and (3) the CT and MR head image pairs from 12 patients with brain tumors. For the synthetic images, the registration results were compared with known transformation parameters, and all algorithms achieved accuracy of submillimeter in translation and subdegree in rotation. For the phantom images, the registration results were compared with those provided by frame and marker-based manual registration. For the patient images, the results were compared with anatomical landmark-based manual registration to qualitatively determine how the results were close to a clinically acceptable registration. NMI and LC outperformed CC and BSMI, with the sense of being closer to a clinically acceptable result. As for the robustness, NMI and BSMI outperformed CC and LC. A guideline of image registration in our institution was given, and final visual assessment is necessary to guarantee reasonable results.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center