Send to

Choose Destination
See comment in PubMed Commons below
Chemosphere. 2009 Nov;77(10):1299-305. doi: 10.1016/j.chemosphere.2009.09.063. Epub 2009 Oct 22.

Degradation and adsorption of selected pharmaceuticals and personal care products (PPCPs) in agricultural soils.

Author information

Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.


Pharmaceuticals and personal care products (PPCPs) are emerging contaminants in the environment, which have drawn popular concerns recently. Most studies on the environmental fate of PPCPs have focused on their behaviors during wastewater treatment processes, in aquatic environments, and in the sludge, however, little is known about their behavior in agricultural soils. In this study, adsorption and degradation of six selected PPCPs, including clofibric acid, ibuprofen, naproxen, triclosan, diclofenac and bisphenol A have been investigated in the laboratory using four US agricultural soils associated with reclaimed wastewater reuse. Adsorption test using a batch equilibrium method demonstrated that adsorption of all tested chemicals in soils could be well described with Freundlich equation, and their adsorption affinity on soil followed the order of triclosan>bisphenol A>clofibric acid>naproxen>diclofenac>ibuprofen. Retardation factor (R(F)) suggested that ibuprofen had potential to move downward with percolating water, while triclosan and bisphenol A were readily retarded in soils. Degradation of selected PPCPs in soils generally followed first-order exponential decay kinetics, with half-lives ranging from 0.81 to 20.44 d. Degradation of PPCPs in soils appeared to be influenced by the soil organic matter and clay contents. Sterilization generally decreased the degradation rates, indicating microbial activity played a significant role in the degradation in soils. The degradation rate constant decreased with increasing initial chemical concentrations in soil, implying that the microbial activity was inhibited with high chemical loading levels.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center