Send to

Choose Destination
See comment in PubMed Commons below
Invest Ophthalmol Vis Sci. 2010 Feb;51(2):960-70. doi: 10.1167/iovs.09-3884. Epub 2009 Oct 22.

Identification of barriers to retinal engraftment of transplanted stem cells.

Author information

Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom.



Intraocular stem cell transplantation may be therapeutic for retinal neurodegenerative diseases such as glaucoma via neuronal replacement and/or neuroprotection. However, efficacy is hindered by extremely poor retinal graft integration. The purpose was to identify the major barrier to retinal integration of intravitreally transplanted stem cells, which was hypothesized to include the cellular and/or extracellular matrix (ECM) components of the inner limiting membrane (ILM).


Mesenchymal stem cells (MSCs) were cocultured on the vitreal surface of retinal explants. Retinal MSC migration was compared between control explants and explants in which portions of the ILM were removed by mechanical peeling; the inner basal lamina was digested with collagenase; and glial cell reactivity was selectively modulated with alpha-aminoadipic acid (AAA). In vivo, the MSCs were transplanted after intravitreal AAA or saline injection into glaucomatous rat eyes.


Retinal MSC migration correlated positively with the amount of peeled ILM, whereas enzymatic digestion of the basal lamina was robust but did not enhance MSC entry. In contrast, AAA treatment suppressed glial cell reactivity and facilitated a >50-fold increase in MSC migration into retinal explants. In vivo analysis showed that AAA treatment led to a more than fourfold increase in retinal engraftment.


The results demonstrated that the ECM of the inner basal lamina is neither necessary nor sufficient to prevent migration of transplanted cells into the neural retina. In contrast, glial reactivity was associated with poor graft migration. Targeted disruption of glial reactivity dramatically improved the structural integration of intravitreally transplanted cells.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems Icon for PubMed Central
    Loading ...
    Support Center