Format

Send to

Choose Destination
Appl Microbiol Biotechnol. 2010 Jan;85(4):885-91. doi: 10.1007/s00253-009-2237-8. Epub 2009 Oct 22.

Spaceflight and modeled microgravity effects on microbial growth and virulence.

Author information

1
Department of Biology Houston, Texas Southern University, Houston, TX, USA. rosenzweigja@tsu.edu

Abstract

For unsuspecting bacteria, the difference between life and death depends upon efficient and specific responses to various stressors. Facing a much larger world, microbes are invariably challenged with ever-changing environments where temperature, pH, chemicals, and nutrients are in a constant state of flux. Only those that are able to rapidly reprogram themselves and express subsets of genes needed to overcome the stress will survive and outcompete neighboring microbes. Recently, low shear stress, emulating microgravity (MG) experienced in space, has been characterized in a number of microorganisms including fungi and prokaryotes ranging from harmless surrogate organisms to bona fide pathogens. Interestingly, MG appears to induce a plethora of effects ranging from enhanced pathogenicity in several Gram-negative enterics to enhanced biofilm formation. Furthermore, MG-exposed bacteria appeared better able to handle subsequent stressors including: osmolarity, pH, temperature, and antimicrobial challenge while yeast exhibited aberrant budding post-MG-exposure. This review will focus on MG-induced alterations of virulence in various microbes with the emphasis placed on bacteria.

PMID:
19847423
PMCID:
PMC2804794
DOI:
10.1007/s00253-009-2237-8
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Springer Icon for PubMed Central
Loading ...
Support Center