Format

Send to

Choose Destination
J Mol Cell Cardiol. 2010 Feb;48(2):293-301. doi: 10.1016/j.yjmcc.2009.10.005. Epub 2009 Oct 14.

Flecainide inhibits arrhythmogenic Ca2+ waves by open state block of ryanodine receptor Ca2+ release channels and reduction of Ca2+ spark mass.

Author information

1
Division of Clinical Pharmacology, Oates Institute for Experimental Therapeutics, Vanderbilt University School of Medicine, Nashville, TN 37232-0575, USA.

Abstract

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is linked to mutations in the cardiac ryanodine receptor (RyR2) or calsequestrin. We recently found that the drug flecainide inhibits RyR2 channels and prevents CPVT in mice and humans. Here we compared the effects of flecainide and tetracaine, a known RyR2 inhibitor ineffective in CPVT myocytes, on arrhythmogenic Ca(2+) waves and elementary sarcoplasmic reticulum (SR) Ca(2+) release events, Ca(2+) sparks. In ventricular myocytes isolated from a CPVT mouse model, flecainide significantly reduced spark amplitude and spark width, resulting in a 40% reduction in spark mass. Surprisingly, flecainide significantly increased spark frequency. As a result, flecainide had no significant effect on spark-mediated SR Ca(2+) leak or SR Ca(2+) content. In contrast, tetracaine decreased spark frequency and spark-mediated SR Ca(2+) leak, resulting in a significantly increased SR Ca(2+) content. Measurements in permeabilized rat ventricular myocytes confirmed the different effects of flecainide and tetracaine on spark frequency and Ca(2+) waves. In lipid bilayers, flecainide inhibited RyR2 channels by open state block, whereas tetracaine primarily prolonged RyR2 closed times. The differential effects of flecainide and tetracaine on sparks and RyR2 gating can explain why flecainide, unlike tetracaine, does not change the balance of SR Ca(2+) fluxes. We suggest that the smaller spark mass contributes to flecainide's antiarrhythmic action by reducing the probability of saltatory wave propagation between adjacent Ca(2+) release units. Our results indicate that inhibition of the RyR2 open state provides a new therapeutic strategy to prevent diastolic Ca(2+) waves resulting in triggered arrhythmias, such as CPVT.

PMID:
19835880
PMCID:
PMC2813417
DOI:
10.1016/j.yjmcc.2009.10.005
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center