Send to

Choose Destination
J Hypertens. 2009 Nov;27(11):2223-31. doi: 10.1097/HJH.0b013e328330b6d9.

Effect of peroxisome proliferator-activated receptor-alpha siRNA on hypertension and renal injury in the rat following nitric oxide withdrawal and high salt diet.

Author information

Center for Cardiovascular Diseases, College of Pharmacy and Health Sciences, Texas Southern University, USA.



Peroxisome proliferator-activated receptor (PPAR)-alpha has been implicated in the regulation of normal and pathological cellular functions, but the effect of specific gene silencing on PPARalpha-mediated function is not fully defined.


This study evaluated the role of PPARalpha in hypertensive renal injury induced by nitric oxide withdrawal and high salt (4% NaCl) diet [high salt/N(omega)-nitro-L-arginine (L-NNA)].


Three PPARalpha siRNA clones, siRNA(790-811), siRNA(974-995) or siRNA(1410-1431), directed at the DNA or ligand binding domain of PPARalpha mRNA or scrambled siRNA was cloned into plasmid expression vector and was injected (10 microg intravenously) in hypertensive rats. Twenty-four-hour readings of blood pressure and heart rate were taken in conscious rats using radiotelemetry. Kidney injury was evaluated by determining N-acetyl-beta-glucosaminidase excretion, expression of kidney injury molecule-1 and histopathology. PPARalpha mRNA and protein expression were also determined.


High salt/L-NNA increased PPARalpha mRNA expression three-fold, and this was abolished in rats treated with PPARalpha siRNA(790-811), siRNA(974-995) or siRNA(1410-1431). High salt/L-NNA also increased blood pressure but reduced heart rate without affecting pulse pressure. However, blood pressure was further increased in rats treated with PPARalpha siRNA(790-811) (37 +/- 3%, P < 0.05). High salt/L-NNA also increased N-acetyl-beta-glucosaminidase excretion and expression of kidney injury molecule-1. However, PPARalpha siRNA(790-811) did not affect N-acetyl-beta-glucosaminidase excretion but reduced kidney injury molecule-1 expression. Histopathology of kidney tissues in high salt/L-NNA-treated rats revealed global, fibrinoid and tubular interstitial necrosis that was blunted by PPARalpha siRNA(790-811).


These data suggest that increased PPARalpha expression is a protective mechanism in hypertensive renal injury induced by nitric oxide withdrawal/high salt diet and that siRNAs targeting the DNA-binding domain of PPARalpha gene elicited differential effects on hypertension and kidney injury.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wolters Kluwer
Loading ...
Support Center