Send to

Choose Destination
See comment in PubMed Commons below
Poult Sci. 2009 Nov;88(11):2399-405. doi: 10.3382/ps.2009-00126.

Dietary omega-3 polyunsaturated fatty acid does not influence the intestinal microbial communities of broiler chickens.

Author information

Pig and Poultry Production Institute, South Australian Research and Development Institute, University of Adelaide, Roseworthy Campus, 5371, South Australia.


The capacity for n-3 polyunsaturated fatty acids (PUFA) to improve broiler chicken growth, influence the intestinal microbial communities, and modify the PUFA content of meat was studied. Male Cobb 500 chickens were fed 1 of 4 diets from hatch: control (standard diet with no additives), ZnB (standard diet with added antibiotics), 2% SALmate (standard diet with 2% SALmate, which is composed of 42% fish oil and 58% starch), and 5% SALmate (standard diet with 5% SALmate). A 7-d energy metabolism study was conducted between d 15 and 22 posthatch. Birds were killed at d 25 and intestinal samples were collected to assess microbial communities by terminal restriction fragment length polymorphism and Lactobacillus PCR-denaturing gradient gel electrophoresis. Diet did not affect BW, feed intake, feed conversion, or ileal digestible energy (P > 0.05). Apparent ME was greater in ZnB-fed birds compared with all other diets (P < 0.05). Breast tissue levels of eicosapentaenoic acid, docosahexaenoic acid, docosapentaenoic acid, and total n-3 PUFA were elevated significantly in 2% SALmate- and 5% SALmate-fed chickens compared with control and ZnB diets (P < 0.05). No significant differences in overall microbial communities were observed in the ileum or cecum as assessed by terminal RFLP (P > 0.05). Birds fed 2% SALmate had a significantly different cecal Lactobacillus species profile compared with birds fed the control diet (P < 0.05); however, no differences were observed in birds fed 5% SALmate compared with birds fed all other diets. In addition to the expected increase in breast tissue n-3 fatty acid levels, a low level of dietary n-3 PUFA also altered the intestinal Lactobacillus species profiles. However, n-3 PUFA supplementation did not alter the overall microbial communities or broiler performance.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center