Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2009 Oct 14;29(41):13042-52. doi: 10.1523/JNEUROSCI.2362-09.2009.

gamma-Secretase: successive tripeptide and tetrapeptide release from the transmembrane domain of beta-carboxyl terminal fragment.

Author information

1
Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kizugawa 619-0225, Japan.

Abstract

Amyloid beta protein (Abeta), a pathogenic molecule associated with Alzheimer's disease, is produced by gamma-secretase, which cleaves the beta-carboxyl terminal fragment (betaCTF) of beta-amyloid precursor protein in the middle of its transmembrane domain. How the cleavage proceeds within the membrane has long been enigmatic. We hypothesized previously that betaCTF is cleaved first at the membrane-cytoplasm boundary, producing two long Abetas, Abeta(48) and Abeta(49), which are processed further by releasing three residues at each step to produce Abeta(42) and Abeta(40), respectively. To test this hypothesis, we used liquid chromatography tandem mass spectrometry (LC-MS/MS) to quantify the specific tripeptides that are postulated to be released. Using CHAPSO (3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxyl-1-propanesulfonate)-reconstituted gamma-secretase system, we confirmed that Abeta(49) is converted to Abeta(43/40) by successively releasing two or three tripeptides and that Abeta(48) is converted to Abeta(42/38) by successively releasing two tripeptides or these plus an additional tetrapeptide. Most unexpectedly, LC-MS/MS quantification revealed an induction period, 3-4 min, in the generation of peptides. When extrapolated, each time line for each tripeptide appears to intercept the same point on the x-axis. According to numerical simulation based on the successive reaction kinetics, the induction period exists. These results strongly suggest that Abeta is generated through the stepwise processing of betaCTF by gamma-secretase.

PMID:
19828817
DOI:
10.1523/JNEUROSCI.2362-09.2009
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center