Format

Send to

Choose Destination
See comment in PubMed Commons below
Biol Trace Elem Res. 2010 Sep;136(3):258-68. doi: 10.1007/s12011-009-8540-5. Epub 2009 Oct 13.

Trigonella foenum-graecum (Fenugreek) protects against selenite-induced oxidative stress in experimental cataractogenesis.

Author information

1
Department of Ocular Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Sector III, Pushp Vihar, New Delhi, 110017, India.

Abstract

Cataract is the opacification in eye lens and leads to 50% of blindness worldwide. The present study was undertaken to evaluate the anticataract potential of Trigonella foenum-graecum Linn seeds (fenugreek) in selenite-induced in vitro and in vivo cataract. In vitro enucleated rat lenses were maintained in organ culture containing Dulbecco's modified Eagles medium (DMEM) alone or in addition with 100 microM selenite and served as the normal and control groups, respectively. For the test group, the medium was supplemented with selenite and T. foenum-graecum aqueous extract. The lenses were incubated for 24 h at 37 degrees C. After incubation, the lenses were processed for the estimation of reduced glutathione (GSH), lipid peroxidation product (malondialdehyde), and the antioxidant enzymes. In vivo selenite cataract was induced in 9-day-old rats by subcutaneous injection of sodium selenite (25 micromol/kg body weight). Animals in the test group were injected with different doses of aqueous extract of T. foenum-graecum 4 h before the selenite challenge. A fall in GSH and a rise in malondialdehyde levels were observed in control as compared to normal lenses. T. foenum-graecum significantly (P < 0.01) restored glutathione and decreased malondialdehyde levels. A significant restoration in the activities of antioxidant enzymes such as superoxide dismutase (P < 0.01), catalase, (P < 0.01), glutathione peroxidase (P < 0.01), and glutathione-S-transferase (P < 0.01) was observed in the T. foenum-graecum supplemented group as compared to control. In vivo, none of the eyes was found with nuclear cataract in treated group as opposed to 72.5% in the control group. T. foenum-graecum protects against experimental cataract by virtue of its antioxidant properties. Further studies are warranted to explore its role in human cataract.

PMID:
19823776
DOI:
10.1007/s12011-009-8540-5
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center