Format

Send to

Choose Destination
See comment in PubMed Commons below
Anticancer Drugs. 2010 Jan;21(1):10-24. doi: 10.1097/CAD.0b013e32832afc3b.

Scatter factor protects tumor cells against apoptosis caused by TRAIL.

Author information

1
Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057-1469, USA.

Abstract

Scatter factor (SF) and its receptor c-Met are overexpressed in various tumor types, and their expression often correlates with a poor prognosis. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), is a proposed tumor-specific chemotherapy agent, but its clinical usage is limited by acquisition of TRAIL resistance by tumors. The goals of this study were to determine whether and how SF protects tumor cells against TRAIL and whether SF-induced TRAIL resistance could be reversed. We used MTT assays, trypan blue dye exclusion assays, apoptosis assays, RNA interference, luciferase reporter assays, immunoprecipitation/western blotting, and other cell biological techniques to study SF protection of cultured human tumor cells against TRAIL. SF conferred resistance to TRAIL in various human prostate carcinoma and breast carcinoma cell lines. SF inhibited TRAIL-induced caspase-3 activation, poly (ADP-ribose) polymerase cleavage, and cell death. SF protection against TRAIL required c-Akt; but unlike protection against adriamycin, it did not require Src signaling or the classical pathway of nuclear factor-kappaB activation. Protection against TRAIL was blocked by knockdown of X-linked inhibitor of apoptosis or FLICE-inhibitor protein (FLIP) (a component of the death-inducing signaling complex). We found that c-Met physically associates with several TRAIL receptors and SF regulates their protein stability. Protection against TRAIL was blocked by a novel small molecule inhibitor of c-Met (PHA665752) and by an inhibitor of cyclooxygenase 2. In conclusion, these findings elucidate potential mechanisms of TRAIL resistance in tumors that overexpress the SF/c-Met and identify possible means of reversing this resistance.

PMID:
19823077
DOI:
10.1097/CAD.0b013e32832afc3b
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Lippincott Williams & Wilkins
    Loading ...
    Support Center