Format

Send to

Choose Destination
Nature. 2009 Oct 8;461(7265):776-9. doi: 10.1038/nature08399.

Early Palaeogene temperature evolution of the southwest Pacific Ocean.

Author information

1
Palaeoecology, Institute of Environmental Biology, Faculty of Science, Laboratory of Palaeobotany and Palynology, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands. p.k.bijl@uu.nl

Abstract

Relative to the present day, meridional temperature gradients in the Early Eocene age ( approximately 56-53 Myr ago) were unusually low, with slightly warmer equatorial regions but with much warmer subtropical Arctic and mid-latitude climates. By the end of the Eocene epoch ( approximately 34 Myr ago), the first major Antarctic ice sheets had appeared, suggesting that major cooling had taken place. Yet the global transition into this icehouse climate remains poorly constrained, as only a few temperature records are available portraying the Cenozoic climatic evolution of the high southern latitudes. Here we present a uniquely continuous and chronostratigraphically well-calibrated TEX(86) record of sea surface temperature (SST) from an ocean sediment core in the East Tasman Plateau (palaeolatitude approximately 65 degrees S). We show that southwest Pacific SSTs rose above present-day tropical values (to approximately 34 degrees C) during the Early Eocene age ( approximately 53 Myr ago) and had gradually decreased to about 21 degrees C by the early Late Eocene age ( approximately 36 Myr ago). Our results imply that there was almost no latitudinal SST gradient between subequatorial and subpolar regions during the Early Eocene age (55-50 Myr ago). Thereafter, the latitudinal gradient markedly increased. In theory, if Eocene cooling was largely driven by a decrease in atmospheric greenhouse gas concentration, additional processes are required to explain the relative stability of tropical SSTs given that there was more significant cooling at higher latitudes.

PMID:
19812670
DOI:
10.1038/nature08399
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center