Hydrogen-atom abstraction reactions by manganese(V)- and manganese(IV)-oxo porphyrin complexes in aqueous solution

Chemistry. 2009 Nov 2;15(43):11482-9. doi: 10.1002/chem.200901362.

Abstract

High-valent manganese(IV or V)-oxo porphyrins are considered as reactive intermediates in the oxidation of organic substrates by manganese porphyrin catalysts. We have generated Mn(V)- and Mn(IV)-oxo porphyrins in basic aqueous solution and investigated their reactivities in C-H bond activation of hydrocarbons. We now report that Mn(V)- and Mn(IV)-oxo porphyrins are capable of activating C-H bonds of alkylaromatics, with the reactivity order of Mn(V)-oxo>Mn(IV)-oxo; the reactivity of a Mn(V)-oxo complex is 150 times greater than that of a Mn(IV)-oxo complex in the oxidation of xanthene. The C-H bond activation of alkylaromatics by the Mn(V)- and Mn(IV)-oxo porphyrins is proposed to occur through a hydrogen-atom abstraction, based on the observations of a good linear correlation between the reaction rates and the C-H bond dissociation energy (BDE) of substrates and high kinetic isotope effect (KIE) values in the oxidation of xanthene and dihydroanthracene (DHA). We have demonstrated that the disproportionation of Mn(IV)-oxo porphyrins to Mn(V)-oxo and Mn(III) porphyrins is not a feasible pathway in basic aqueous solution and that Mn(IV)-oxo porphyrins are able to abstract hydrogen atoms from alkylaromatics. The C-H bond activation of alkylaromatics by Mn(V)- and Mn(IV)-oxo species proceeds through a one-electron process, in which a Mn(IV)-oxo porphyrin is formed as a product in the C-H bond activation by a Mn(V)-oxo porphyrin, followed by a further reaction of the Mn(IV)-oxo porphyrin with substrates that results in the formation of a Mn(III) porphyrin complex. This result is in contrast to the oxidation of sulfides by the Mn(V)-oxo porphyrin, in which the oxidation of thioanisole by the Mn(V)-oxo complex produces the starting Mn(III) porphyrin and thioanisole oxide. This result indicates that the oxidation of sulfides by the Mn(V)-oxo species occurs by means of a two-electron oxidation process. In contrast, a Mn(IV)-oxo porphyrin complex is not capable of oxidizing sulfides due to a low oxidizing power in basic aqueous solution.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Hydrogen / chemistry*
  • Manganese / chemistry*
  • Oxidation-Reduction
  • Oxides / chemistry
  • Porphyrins / chemistry*
  • Spectrophotometry, Ultraviolet
  • Water / chemistry*

Substances

  • Oxides
  • Porphyrins
  • Water
  • Manganese
  • Hydrogen