Send to

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2009 Oct 15;69(20):7911-6. doi: 10.1158/0008-5472.CAN-09-1287. Epub 2009 Oct 6.

A novel PTEN-dependent link to ubiquitination controls FLIPS stability and TRAIL sensitivity in glioblastoma multiforme.

Author information

  • 1Brain Tumor Research Center, Department of Neurological Surgery and University of California San Francisco Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158-9001, USA.


Phosphatase and tensin homologue (PTEN) loss and activation of the Akt-mammalian target of rapamycin (mTOR) pathway increases mRNA translation, increases levels of the antiapoptotic protein FLIP(S), and confers resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in glioblastoma multiforme (GBM). In PTEN-deficient GBM cells, however, the FLIP(S) protein also exhibited a longer half-life than in PTEN mutant GBM cells, and this longer half-life correlated with decreased FLIP(S) polyubiquitination. FLIP(S) half-life in PTEN mutant GBM cells was reduced by exposure to an Akt inhibitor, but not to rapamycin, suggesting the existence of a previously undescribed, mTOR-independent linkage between PTEN and the ubiquitin-dependent control of protein stability. Total levels of the candidate FLIP(S) E3 ubiquitin ligase atrophin-interacting protein 4 (AIP4) were comparable in PTEN wild-type (WT) and PTEN mutant GBM cells, although in PTEN-deficient cells, AIP4 was maintained in a stable polyubiquitinated state that was less able to associate with FLIP(S) or with the FLIP(S)-containing death inducing signal complex. Small interfering RNA-mediated suppression of AIP4 levels in PTEN WT cells decreased FLIP(S) ubiquitination, prolonged FLIP(S) half-life, and increased TRAIL resistance. Similarly, the Akt activation that was previously shown to increase TRAIL resistance did not alter AIP4 levels, but increased AIP4 ubiquitination, increased FLIP(S) steady-state levels, and suppressed FLIP(S) ubiquitination. These results define the PTEN-Akt-AIP4 pathway as a key regulator of FLIP(S) ubiquitination, FLIP(S) stability, and TRAIL sensitivity and also define a novel link between PTEN and the ubiquitin-mediated control of protein stability.

[PubMed - indexed for MEDLINE]
Free PMC Article

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms


Grant Support

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center