Send to

Choose Destination
See comment in PubMed Commons below
Mol Cell Biol. 2009 Dec;29(24):6427-37. doi: 10.1128/MCB.00086-09. Epub 2009 Oct 5.

XPF-ERCC1 participates in the Fanconi anemia pathway of cross-link repair.

Author information

  • 1Department of Human Genetics, University of Pittsburgh School of Public Health, A300 Crabtree Hall, 130 Desoto St., Pittsburgh, Pennsylvania 152611, USA.


Interstrand cross-links (ICLs) prevent DNA strand separation and, therefore, transcription and replication, making them extremely cytotoxic. The precise mechanism by which ICLs are removed from mammalian genomes largely remains elusive. Genetic evidence implicates ATR, the Fanconi anemia proteins, proteins required for homologous recombination, translesion synthesis, and at least two endonucleases, MUS81-EME1 and XPF-ERCC1. ICLs cause replication-dependent DNA double-strand breaks (DSBs), and MUS81-EME1 facilitates DSB formation. The subsequent repair of these DSBs occurs via homologous recombination after the ICL is unhooked by XPF-ERCC1. Here, we examined the effect of the loss of either nuclease on FANCD2 monoubiquitination to determine if the nucleolytic processing of ICLs is required for the activation of the Fanconi anemia pathway. FANCD2 was monoubiquitinated in Mus81(-/-), Ercc1(-/-), and XPF-deficient human, mouse, and hamster cells exposed to cross-linking agents. However, the monoubiquitinated form of FANCD2 persisted longer in XPF-ERCC1-deficient cells than in wild-type cells. Moreover, the levels of chromatin-bound FANCD2 were dramatically reduced and the number of ICL-induced FANCD2 foci significantly lower in XPF-ERCC1-deficient cells. These data demonstrate that the unhooking of an ICL by XPF-ERCC1 is necessary for the stable localization of FANCD2 to the chromatin and subsequent homologous recombination-mediated DSB repair.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center