Format

Send to

Choose Destination
Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17735-40. doi: 10.1073/pnas.0907367106. Epub 2009 Oct 1.

Continuous imaging of plasmon rulers in live cells reveals early-stage caspase-3 activation at the single-molecule level.

Author information

1
Department of Chemistry, University of California and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

Abstract

The use of plasmon coupling in metal nanoparticles has shown great potential for the optical characterization of many biological processes. Recently, we have demonstrated the use of "plasmon rulers" to observe conformational changes of single biomolecules in vitro. Plasmon rulers provide robust signals without photobleaching or blinking. Here, we show the first application of plasmon rulers to in vivo studies to observe very long trajectories of single biomolecules in live cells. We present a unique type of plasmon ruler comprised of peptide-linked gold nanoparticle satellites around a core particle, which was used as a probe to optically follow cell-signaling pathways in vivo at the single-molecule level. These "crown nanoparticle plasmon rulers" allowed us to continuously monitor trajectories of caspase-3 activity in live cells for over 2 h, providing sufficient time to observe early-stage caspase-3 activation, which was not possible by conventional ensemble analyses.

PMID:
19805121
PMCID:
PMC2764940
DOI:
10.1073/pnas.0907367106
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center