Send to

Choose Destination
See comment in PubMed Commons below
Opt Lett. 1993 Apr 1;18(7):491-3.

Direct time integration of Maxwell's equations in two-dimensional dielectric waveguides for propagation and scattering of femtosecond electromagnetic solitons.


We present what are to our knowledge first-time calculations from vector nonlinear Maxwell's equations of femtosecond soliton propagation and scattering, including carrier waves, in two-dimensional dielectric waveguides. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and the nonlinear convolution accounts for two quantum effects, the Kerr and Raman interactions. By retaining the optical carrier, the new method solves for fundamental quantities-optical electric and magnetic fields in space and time-rather than a nonphysical envelope function. It has the potential to provide an unprecedented two- and three-dimensional modeling capability for millimeter-scale integrated-optical circuits with submicrometer engineered inhomogeneities.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center