Format

Send to

Choose Destination
See comment in PubMed Commons below
Nat Biotechnol. 2009 Oct;27(10):946-50. doi: 10.1038/nbt.1568. Epub 2009 Oct 4.

Automated design of synthetic ribosome binding sites to control protein expression.

Author information

1
Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA.

Abstract

Microbial engineering often requires fine control over protein expression--for example, to connect genetic circuits or control flux through a metabolic pathway. To circumvent the need for trial and error optimization, we developed a predictive method for designing synthetic ribosome binding sites, enabling a rational control over the protein expression level. Experimental validation of >100 predictions in Escherichia coli showed that the method is accurate to within a factor of 2.3 over a range of 100,000-fold. The design method also correctly predicted that reusing identical ribosome binding site sequences in different genetic contexts can result in different protein expression levels. We demonstrate the method's utility by rationally optimizing protein expression to connect a genetic sensor to a synthetic circuit. The proposed forward engineering approach should accelerate the construction and systematic optimization of large genetic systems.

PMID:
19801975
PMCID:
PMC2782888
DOI:
10.1038/nbt.1568
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Support Center