Send to

Choose Destination
See comment in PubMed Commons below
Yakugaku Zasshi. 2009 Oct;129(10):1141-54.

[Overview in 45 years of studies on peptide chemistry].

[Article in Japanese]

Author information

Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan.


This review documents my research for the past 45 years in peptide chemistry. Initially, in order to study the structure-activity relationships of active center of alpha- and beta-melanocyte stimulating hormones (H-His-Phe-Arg-Trp-Gly-OH), we employed D-amino acids. That approach yielded first published report in 1965 of antagonists containing D-amino acids. Monkey beta-melanocyte stimulating hormone (beta-MSH), an 18 amino acid peptide stimulated pigment cells. We synthesized beta-MSH and fragments thereof, and studied in detail structure-activity relationships. A major and valuable result revealed that the C-terminal pentadecapeptide of beta-MSH exhibited higher MSH activity than the parent hormone providing a new question; namely, what was the role of the N-terminal tripeptide? In order to identify the novel enzyme, spleen fibrinolytic proteinase (SFP), I developed a specific chromogenic substrate, Suc-Ala-Tyr-Leu-Val-pNA, and a specific inhibitor, Suc-Tyr-D-Leu-D-Val-pNA, once again employing my D-amino acid strategy. SFP was purified by affinity chromatography using Suc-Tyr-D-Leu-D-Val-pNA as the bound ligand. The success of this approach provided me the incentive to develop a variety of potential drugs. Thus, I prepared a specific plasmin inhibitor (YO-2) and a plasma kallikrein inhibitor (PKSI-527). Next, my research developed novel opioid receptor specific opioid agonists and antagonists based on 2',6'-dimethyl-L-tyrosine (Dmt) dimers coupled with unique pyrazinone ring as a spacer. They exhibited potent oral antinociceptive activity acting through the mu-opioid receptor. Potent mu-receptor agonists (H-Dmt-Pro-Phe/Trp- Phe-NH(2)) were transformed into highly selective mu-receptor antagonists (N-allyl-Dmt-Pro-Phe/Trp-Phe-NH(2)), which reversed ethanol-induced increases in GABAergic neurotransmission, suggesting the possibility that they may emerge as candidates for the treatment of ethanol addiction.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
    Loading ...
    Support Center