Format

Send to

Choose Destination
See comment in PubMed Commons below
Plant J. 2010 Jan;61(1):83-95. doi: 10.1111/j.1365-313X.2009.04035.x. Epub 2009 Oct 1.

Ethylene-induced hyponastic growth in Arabidopsis thaliana is controlled by ERECTA.

Author information

  • 1Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands. m.vanzanten@uu.nl

Abstract

Plants can respond quickly and profoundly to detrimental changes in their environment. For example, Arabidopsis thaliana can induce an upward leaf movement response through differential petiole growth (hyponastic growth) to outgrow complete submergence. This response is induced by accumulation of the phytohormone ethylene in the plant. Currently, only limited information is available on how this response is molecularly controlled. In this study, we utilized quantitative trait loci (QTL) analysis of natural genetic variation among Arabidopsis accessions to isolate novel factors controlling constitutive petiole angles and ethylene-induced hyponastic growth. Analysis of mutants in various backgrounds and complementation analysis of naturally occurring mutant accessions provided evidence that the leucin-rich repeat receptor-like Ser/Thr kinase gene, ERECTA, controls ethylene-induced hyponastic growth. Moreover, ERECTA controls leaf positioning in the absence of ethylene treatment. Our data demonstrate that this is not due to altered ethylene production or sensitivity.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center