Format

Send to

Choose Destination
See comment in PubMed Commons below
FEBS J. 2009 Nov;276(21):6128-57. doi: 10.1111/j.1742-4658.2009.07347.x. Epub 2009 Sep 30.

Arthropod nuclear receptors and their role in molting.

Author information

  • 1Division of Applied Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-Ku, Kyoto 606-8502, Japan. naka@kais.kyoto-u.ac.jp

Erratum in

  • FEBS J. 2011 Aug;278(15):2751.

Abstract

The molting process in arthropods is regulated by steroid hormones acting via nuclear receptor proteins. The most common molting hormone is the ecdysteroid, 20-hydroxyecdysone. The receptors of 20-hydroxyecdysone have also been identified in many arthropod species, and the amino acid sequences determined. The functional molting hormone receptors consist of two members of the nuclear receptor superfamily, namely the ecdysone receptor and the ultraspiracle, although the ecdysone receptor may be functional, in some instances, without the ultraspiracle. Generally, the ecdysone receptor/ultraspiracle heterodimer binds to a number of ecdysone response elements, sequence motifs that reside in the promoter of various ecdysteroid-responsive genes. In the ensuing transcriptional induction, the ecdysone receptor/ultraspiracle complex binds to 20-hydroxyecdysone or to a cognate ligand that, in turn, leads to the release of a corepressor and the recruitment of coactivators. 3D structures of the ligand-binding domains of the ecdysone receptor and the ultraspiracle have been solved for a few insect species. Ecdysone agonists bind to ecdysone receptors specifically, and ligand-ecdysone receptor binding is enhanced in the presence of the ultraspiracle in insects. The basic mode of ecdysteroid receptor action is highly conserved, but substantial functional differences exist among the receptors of individual species. Even though the transcriptional effects are apparently similar for ecdysteroids and nonsteroidal compounds such as diacylhydrazines, the binding shapes are different between them. The compounds having the strongest binding affinity to receptors ordinarily have strong molting hormone activity. The ability of the ecdysone receptor/ultraspiracle complex to manifest the effects of small lipophilic agonists has led to their use as gene switches for medical and agricultural applications.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center