P(PhCH2NCH2CH2)3N catalysis of Mukaiyama aldol reactions of aliphatic, aromatic, and heterocyclic aldehydes and trifluoromethyl phenyl ketone

J Org Chem. 2009 Nov 6;74(21):8118-32. doi: 10.1021/jo901571y.

Abstract

Herein we find that proazaphosphatrane 1c is a very efficient catalyst for Mukaiyama aldol reactions of aldehydes with trimethylsilyl enolates in THF solvent. Only the activated ketone 2,2,2-trifluoroacetophenone underwent clean aldol product formation with a variety of trimethylsilyl enolates under similar conditions as the aldehydes. The reactions were carried out at room temperature using (1-methoxy-2-methyl-1-propenyloxy)trimethylsilane, whereas the temperature was -15 degrees C in the case of 1-phenyl-1-(trimethylsilyloxy)ethylene. The reaction conditions are mild and operationally simple, and a variety of aryl functional groups, such as nitro, amino, ester, chloro, trifluoromethyl, bromo, iodo, cyano, and fluoro groups, are tolerated. Product yields are generally better than or comparable to those in the literature. 1-Phenyl-1-(trimethylsilyloxy)ethylene, 1-(trimethylsilyloxy)cyclohexene, and 2-(trimethylsilyloxy)furan underwent clean conversion to beta-hydroxy carbonyl compounds under our reaction conditions. In the case of bulky (2,2-dimethyl-1-methylenepropoxy)trimethylsilane, only alpha,beta-unsaturated esters were isolated. Heterocyclic aldehydes, such as pyridine-2-carboxaldehyde, benzofuran-2-carboxaldehyde, benzothiophene-2-carboxaldehyde, and 1-methyl-2-imidazolecarboxaldehyde, gave good yields of Mukaiyama products. An optimized synthesis for the catalyst 1c is also reported herein.