Format

Send to

Choose Destination
J Neurosci Res. 2010 Feb 15;88(3):630-9. doi: 10.1002/jnr.22239.

3-nitropropionic acid-induced mitochondrial permeability transition: comparative study of mitochondria from different tissues and brain regions.

Author information

1
Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas , Campinas, Brazil.

Abstract

The adult rat striatum is particularly vulnerable to systemic administration of the succinate dehydrogenase inhibitor 3-nitropropionic acid (3NP), which is known to induce degeneration of the caudate-putamen, as occurs in Huntington's disease. The aim of the present study was to compare the susceptibility of isolated mitochondria from different rat brain regions (striatum, cortex, and cerebellum) as well as from the liver, kidney, and heart to mitochondrial permeability transition (MPT) induced by 3NP and Ca(2+). In the presence of micromolar Ca(2+) concentrations, 3NP induces MPT in a dose-dependent manner, as estimated by mitochondrial swelling and a decrease in the transmembrane electrical potential. A 3NP concentration capable of promoting a 10% inhibition of ADP-stimulated, succinate-supported respiration was sufficient to stimulate Ca(2+)-induced MPT. Brain and heart mitochondria were generally more sensitive to 3NP and Ca(2+)-induced MPT than mitochondria from liver and kidney. In addition, a partial inhibition of mitochondrial respiration by 3NP resulted in more pronounced MPT in striatal mitochondria than in cortical or cerebellar organelles. A similar inhibition of succinate dehydrogenase activity was observed in rat tissue homogenates obtained from various brain regions as well as from liver, kidney, and heart 24 hr after a single i.p. 3NP dose. Mitochondria isolated from forebrains of 3NP-treated rats were also more susceptible to Ca(2+)-induced MPT than those of control rats. We propose that the increased susceptibility of the striatum to 3NP-induced neurodegeneration may be partially explained by its susceptibility to MPT, together with the greater vulnerability of this brain region to glutamate receptor-mediated Ca(2+) influx.

PMID:
19795369
DOI:
10.1002/jnr.22239
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center