Format

Send to

Choose Destination
See comment in PubMed Commons below
Trends Mol Med. 2009 Oct;15(10):452-60. doi: 10.1016/j.molmed.2009.08.002. Epub 2009 Sep 24.

Hemoglobin, nitric oxide and molecular mechanisms of hypoxic vasodilation.

Author information

1
Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, NC, USA. barry.w.allen@duke.edu

Abstract

The protected transport of nitric oxide (NO) by hemoglobin (Hb) links the metabolic activity of working tissue to the regulation of its local blood supply through hypoxic vasodilation. This physiologic mechanism is allosterically coupled to the O(2) saturation of Hb and involves the covalent binding of NO to a cysteine residue in the beta-chain of Hb (Cys beta93) to form S-nitrosohemoglobin (SNO-Hb). Subsequent S-transnitrosation, the transfer of NO groups to thiols on the RBC membrane and then in the plasma, preserves NO vasodilator activity for delivery to the vascular endothelium. This SNO-Hb paradigm provides insight into the respiratory cycle and a new therapeutic focus for diseases involving abnormal microcirculatory perfusion. In addition, the formation of S-nitrosothiols in other proteins may regulate an array of physiological functions.

PMID:
19781996
PMCID:
PMC2785508
DOI:
10.1016/j.molmed.2009.08.002
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center