Format

Send to

Choose Destination
See comment in PubMed Commons below
Toxicol In Vitro. 2010 Feb;24(1):21-8. doi: 10.1016/j.tiv.2009.09.015. Epub 2009 Sep 22.

Protective effects of myricetin against ultraviolet-B-induced damage in human keratinocytes.

Author information

1
School of Medicine, Fu-Jen Catholic University, Taipei Hsien, Taiwan.

Abstract

Myricetin is a flavonoid similar to quercetin, which is commonly found in natural foods such as berries, vegetables, teas, wine, and herbs. It is considered to be an antioxidant which is capable of quenching photoaging-causing free radicals within the skin. In this study, we investigated the mechanisms underlying protective effect of myricetin on ultraviolet-B (UVB)-induced damage to keratinocytes. We found that myricetin concentration-dependently attenuated UVB-induced keratinocyte death as determined by a cell viability assay. Pretreatment with myricetin also reduced the UVB-induced malondialdehyde level. Moreover, UVB-induced H(2)O(2) generation in keratinocytes was inhibited by myricetin according to flow cytometry, suggesting that myricetin can act as a free radical scavenger when keratinocytes experience photodamage. Furthermore, UVB-induced activation of c-jun-NH(2) terminal kinase (JNK) in keratinocytes was inhibited by myricetin. UVB-induced pre-G(1) phase arrest leading to apoptotic changes in keratinocytes was blocked by myricetin. Taken together, the protective mechanisms of keratinocyte by myricetin against UVB-induced photodamage occur by the inhibition of UVB-induced intracellular hydrogen peroxide production, lipid peroxidation and JNK activation. Therefore, myricetin is suitable for further development as an anti-aging agent for skin care.

PMID:
19778600
DOI:
10.1016/j.tiv.2009.09.015
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center