Send to

Choose Destination
See comment in PubMed Commons below
J Orthop Res. 2010 Mar;28(3):403-11. doi: 10.1002/jor.20978.

Dermal fibroblast-mediated BMP2 therapy to accelerate bone healing in an equine osteotomy model.

Author information

Comparative Orthopedic Research Laboratories, Department of Veterinary Clinical Sciences, The Ohio State University, 601 Tharp Street, Columbus, Ohio 43210, USA.


This study evaluated healing of equine metacarpal/metatarsal osteotomies in response to percutaneous injection of autologous dermal fibroblasts (DFbs) genetically engineered to secrete bone morphogenetic protein-2 (BMP2) or demonstrate green fluorescent protein (GFP) gene expression administered 14 days after surgery. Radiographic assessment of bone formation indicated greater and earlier healing of bone defects treated with DFb with BMP2 gene augmentation. Quantitative computed tomography and biomechanical testing revealed greater mineralized callus and torsional strength of DFb-BMP2-treated bone defects. On the histologic evaluation, the bone defects with DFb-BMP2 implantation had greater formation of mature cartilage and bone nodules within the osteotomy gap and greater mineralization activity on osteotomy edges. Autologous DFbs were successfully isolated in high numbers by a skin biopsy, rapidly expanded without fastidious culture techniques, permissive to adenoviral vectors, and efficient at in vitro BMP2 protein production and BMP2-induced osteogenic differentiation. This study demonstrated an efficacy and feasibility of DFb-mediated BMP2 therapy to accelerate the healing of osteotomies. Skin cell-mediated BMP2 therapy may be considered as a potential treatment for various types of fractures and bone defects.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center