Format

Send to

Choose Destination
ISME J. 2010 Jan;4(1):131-43. doi: 10.1038/ismej.2009.101. Epub 2009 Sep 24.

Subsurface ecosystem resilience: long-term attenuation of subsurface contaminants supports a dynamic microbial community.

Author information

1
Department of Microbiology, Cornell University, Ithaca, NY, USA.

Abstract

The propensity for groundwater ecosystems to recover from contamination by organic chemicals (in this case, coal-tar waste) is of vital concern for scientists and engineers who manage polluted sites. The microbially mediated cleanup processes are also of interest to ecologists because they are an important mechanism for the resilience of ecosystems. In this study we establish the long-term dynamic nature of a coal-tar waste-contaminated site and its microbial community. We present 16 years of chemical monitoring data, tracking responses of a groundwater ecosystem to organic contamination (naphthalene, xylenes, toluene, 2-methyl naphthalene and acenaphthylene) associated with coal-tar waste. In addition, we analyzed small-subunit (SSU) ribosomal RNA (rRNA) genes from two contaminated wells at multiple time points over a 2-year period. Principle component analysis of community rRNA fingerprints (terminal-restriction fragment length polymorphism (T-RFLP)) showed that the composition of native microbial communities varied temporally, yet remained distinctive from well to well. After screening and analysis of 1178 cloned SSU rRNA genes from Bacteria, Archaea and Eukarya, we discovered that the site supports a robust variety of eukaryotes (for example, alveolates (especially anaerobic and predatory ciliates), stramenopiles, fungi, even the small metazoan flatworm, Suomina) that are absent from an uncontaminated control well. This study links the dynamic microbial composition of a contaminated site with the long-term attenuation of its subsurface contaminants.

PMID:
19776766
DOI:
10.1038/ismej.2009.101
[Indexed for MEDLINE]

Publication types, MeSH terms, Substances, Secondary source ID, Grant support

Publication types

MeSH terms

Substances

Secondary source ID

Grant support

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center