Send to

Choose Destination
See comment in PubMed Commons below
IEEE Trans Image Process. 2010 Jan;19(1):53-63. doi: 10.1109/TIP.2009.2032894.

Bayesian compressive sensing using laplace priors.

Author information

Department of Electrical Engineering and Computer Science, Northwestern University, IL 60208-3118, USA.


In this paper, we model the components of the compressive sensing (CS) problem, i.e., the signal acquisition process, the unknown signal coefficients and the model parameters for the signal and noise using the Bayesian framework. We utilize a hierarchical form of the Laplace prior to model the sparsity of the unknown signal. We describe the relationship among a number of sparsity priors proposed in the literature, and show the advantages of the proposed model including its high degree of sparsity. Moreover, we show that some of the existing models are special cases of the proposed model. Using our model, we develop a constructive (greedy) algorithm designed for fast reconstruction useful in practical settings. Unlike most existing CS reconstruction methods, the proposed algorithm is fully automated, i.e., the unknown signal coefficients and all necessary parameters are estimated solely from the observation, and, therefore, no user-intervention is needed. Additionally, the proposed algorithm provides estimates of the uncertainty of the reconstructions. We provide experimental results with synthetic 1-D signals and images, and compare with the state-of-the-art CS reconstruction algorithms demonstrating the superior performance of the proposed approach.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IEEE Engineering in Medicine and Biology Society
    Loading ...
    Support Center