Format

Send to

Choose Destination
See comment in PubMed Commons below
IEEE Trans Biomed Eng. 2010 Feb;57(2):353-62. doi: 10.1109/TBME.2009.2031243. Epub 2009 Sep 15.

Robust detection of premature ventricular contractions using a wave-based Bayesian framework.

Author information

1
Biomedical Signal and Image Processing Laboratory, School of Electrical Engineering, Sharif University of Technology, Tehran 11365-9363, Iran. osayadi@ee.sharif.edu

Abstract

Detection and classification of ventricular complexes from the ECG is of considerable importance in Holter and critical care patient monitoring, being essential for the timely diagnosis of dangerous heart conditions. Accurate detection of premature ventricular contractions (PVCs) is particularly important in relation to life-threatening arrhythmias. In this paper, we introduce a model-based dynamic algorithm for tracking the ECG characteristic waveforms using an extended Kalman filter. The algorithm can work on single or multiple leads. A "polargram"--a polar representation of the signal--is introduced, which is constructed using the Bayesian estimations of the state variables. The polargram allows the specification of a polar envelope for normal rhythms. Moreover, we propose a novel measure of signal fidelity by monitoring the covariance matrix of the innovation signals throughout the filtering procedure. PVCs are detected by simultaneous tracking the signal fidelity and the polar envelope. Five databases, including 40 records from MIT-BIH arrhythmia database, are used for differentiating normal, PVC, and other beats. Performance evaluation results show that the proposed method has an average detection accuracy of 99.10%, aggregate sensitivity of 98.77%, and aggregate positive predictivity of 97.47%. Furthermore, the method is capable of 100% accuracy for records that contain only PVCs and normal sinus beats. The results illustrate that the method can contribute to, and enhance the performance of clinical PVC detection.

PMID:
19758851
PMCID:
PMC2927513
DOI:
10.1109/TBME.2009.2031243
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IEEE Engineering in Medicine and Biology Society Icon for PubMed Central
    Loading ...
    Support Center