Send to

Choose Destination
See comment in PubMed Commons below
Med Phys. 2009 Aug;36(8):3429-37.

In vivo detection and imaging of low-density foreign body with microwave-induced thermoacoustic tomography.

Author information

MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, and College of Biophotonics, South China Normal University, Guangzhou 510631, China.


Radiography or computed tomography is the most widely available imaging tool for foreign body detection. However, the detectability of low-density substances by x ray is very poor when located in soft tissues. Various dielectric loss factors of foreign bodies contribute great microwave absorption heterogeneity compared with the surrounding tissue. A fast thermoacoustic tomography system at 1.2 and 6 GHz was developed to detect foreign targets in small animals. The 6 GHz system had a much higher signal-to-noise ratio in near-surface imaging but smaller imaging depth than the 1.2 GHz system. The effects of microwave distribution inhomogeneity on nonuniform excitation of acoustic pressure were studied and a corresponding calibration algorithm for image distortion was provided and experimentally examined. Thermoacoustic images of radiolucent objects including glass fiber, wood, and bamboo hidden in phantom and residual in living mice were compared with radiography and ultrasonography. Good contrast was obtained between the foreign bodies and the tissue surrounding it, and the location and size of the lesion targets in thermoacoustic images were in good agreement with the actual sample. The experimental results demonstrate that thermoacoustic tomography may become the ideal modality for radiolucent foreign body detection and imaging in animals and human.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center