Format

Send to

Choose Destination
See comment in PubMed Commons below
Exp Mol Med. 2009 Dec 31;41(12):858-65. doi: 10.3858/emm.2009.41.12.096.

Fibroblasts in three dimensional matrices: cell migration and matrix remodeling.

Author information

1
Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756, Korea. sangmyung.rhee@cau.ac.kr

Abstract

Fibroblast-collagen matrix culture has facilitated the analysis of cell physiology under conditions that more closely resemble an in vivo-like environment compared to conventional 2-dimensional (2D) cell culture. Furthermore, it has led to significant progress in understanding reciprocal and adaptive interactions between fibroblasts and the collagen matrix, which occur in tissue. Recent studies on fibroblasts in 3-dimensional (3D) collagen matrices have revealed the importance of biomechanical conditions in addition to biochemical cues for cell signaling and migration. Depending on the surrounding mechanical conditions, cells utilize specific cytoskeletal proteins to adapt to their environment. More specifically, cells utilize microtubule dependent dendritic extensions to provide mechanical structure for matrix contraction under a low cell-matrix tension state, whereas cells in a high cell-matrix tension state utilize conventional acto-myosin activity for matrix remodeling. Results of collagen matrix contraction and cell migration in a 3D collagen matrix revealed that the use of appropriate growth factors led to promigratory and procontractile activity for cultured fibroblasts. Finally, the relationship between cell migration and tractional force for matrix remodeling was discussed.

PMID:
19745603
PMCID:
PMC2802681
DOI:
10.3858/emm.2009.41.12.096
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Support Center