Send to

Choose Destination
Biochemistry. 1990 Jun 5;29(22):5405-12.

Differential release of cellular and scrapie prion proteins from cellular membranes by phosphatidylinositol-specific phospholipase C.

Author information

Department of Neurology, University of California, San Francisco 94143.


The abnormal isoform of the scrapie prion protein PrPSc is both a host-derived protein and a component of the infectious agent causing scrapie. PrPSc and the normal cellular isoform PrPC have different physical properties that apparently arise from a posttranslational event. Both PrP isoforms are covalently modified at the carboxy terminus by a glycoinositol phospholipid. Using preparations of dissociated cells derived from normal and scrapie-infected hamster brain tissue, we find that the majority of PrPC is released from membranes by phosphatidylinositol-specific phospholipase C (PIPLC), while PrPSc is resistant to release. In contrast, purified denatured PrP 27-30 (which is formed from PrPSc during purification by proteolysis of the amino terminus) is completely cleaved by PIPLC. Incubation of the cell preparations with proteinase K cleaves PrPSc to form PrP 27-30, demonstrating that PrPSc is accessible to added enzymes. We have also developed a protocol involving biotinylation that gives a quantitative estimate of the fraction of a protein exposed to the cell exterior. Using this strategy, we find that a large portion of PrPSc in the cell preparations reacts with a membrane-impermeant biotinylation reagent. Whether alternative membrane anchoring of PrPSc, inaccessibility of the glycoinositol phospholipid anchor to PIPLC, or binding to another cellular component is responsible for the differential release of prion proteins from cells remains to be determined.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center