Format

Send to

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2009 Sep 15;69(18):7366-74. doi: 10.1158/0008-5472.CAN-09-0758. Epub 2009 Sep 8.

Dysfunctional transforming growth factor-beta receptor II accelerates prostate tumorigenesis in the TRAMP mouse model.

Author information

  • 1Department of Surgery/Urology, University of Kentucky College of Medicine, Lexington, Kentucky, USA.

Abstract

The contribution of a dysfunctional transforming growth factor-beta type II receptor (TGF beta RII) to prostate cancer initiation and progression was investigated in an in vivo mouse model. Transgenic mice harboring the dominant-negative mutant TGF-beta type II receptor (DNTGF beta RII) in mouse epithelial cell were crossed with the TRAMP prostate cancer transgenic mouse to characterize the in vivo consequences of inactivated TGF-beta signaling on prostate tumor initiation and progression. Histopathologic diagnosis of prostate specimens from the TRAMP+/DNTGF beta RII double transgenic mice revealed the appearance of early malignant changes and subsequently highly aggressive prostate tumors at a younger age, compared with littermates TRAMP+/Wt TGF beta RII mice. Immunohistochemical and Western blotting analysis revealed significantly increased proliferative and apoptotic activities, as well as vascularity and macrophage infiltration that correlated with an elevated vascular endothelial growth factor and MCP-1 protein levels in prostates from TRAMP+/DNTGF beta RII+ mice. An epithelial-mesenchymal transition (EMT) effect was also detected in prostates of TRAMP+/DNTGF beta RII mice, as documented by the loss of epithelial markers (E-cadherin and beta-catenin) and up-regulation of mesenchymal markers (N-cadherin) and EMT-transcription factor Snail. A significant increase in the androgen receptor mRNA and protein levels was associated with the early onset of prostate tumorigenesis in TRAMP+/DNTGF beta RII mice. Our results indicate that in vivo disruption of TGF-beta signaling accelerates the pathologic malignant changes in the prostate by altering the kinetics of prostate growth and inducing EMT. The study also suggests that a dysfunctional TGF beta RII augments androgen receptor expression and promotes inflammation in early stage tumor growth, thus conferring a significant contribution by TGF-beta to prostate cancer progression.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk