Format

Send to

Choose Destination
See comment in PubMed Commons below
Arthroscopy. 2009 Sep;25(9):959-67. doi: 10.1016/j.arthro.2009.03.020.

Biomechanical testing of new meniscal repair techniques containing ultra high-molecular weight polyethylene suture.

Author information

1
Plano Orthopedic Sports Medicine and Spine Center, Plano, Texas 75093, USA.

Abstract

PURPOSE:

To evaluate the biomechanical characteristics of current meniscal repair techniques containing ultra high-molecular weight polyethylene (UHMWPE) suture with and without cyclic loading.

METHODS:

Vertical longitudinal cuts made in porcine menisci were secured with a single repair device. Noncycled and cycled (500 cycles) biomechanical tests were performed on the following groups: group 1, No. 2-0 Mersilene vertical suture (Ethicon, Somerville, NJ); group 2, No. 2-0 Orthocord vertical suture (DePuy Mitek, Westwood, MA); group 3, No. 0 Ultrabraid vertical suture (Smith & Nephew Endoscopy, Andover, MA); group 4, No. 2-0 FiberWire vertical suture (Arthrex, Naples, FL); group 5, vertically oriented mattress suture by use of an Ultra FasT-Fix device (Smith & Nephew Endoscopy) with No. 0 Ultrabraid; group 6, vertically oriented mattress suture by use of a RapidLoc A2 device (DePuy Mitek) with No. 2-0 Orthocord suture; group 7, vertically oriented stitch by use of a MaxFire device with MaxBraid PE suture (Biomet Sports Medicine, Warsaw, IN); and group 8, an obliquely oriented stitch of No. 0 UHMWPE suture inserted by use of a CrossFix device (Cayenne Medical, Scottsdale, AZ). Endpoints were failure loads, failure modes, stiffness, and cyclic displacement.

RESULTS:

Mean single-pull loads were calculated for Ultra FasT-Fix (121 N), FiberWire (110 N), MaxFire (130 N), Mersilene (84 N), Orthocord (124 N), RapidLoc A2 (86 N), CrossFix (77 N), and Ultrabraid (109 N). After 500 cyclic loads, the Orthocord (222 N) repair was stronger than the others: Ultra FasT-Fix (110 N), FiberWire (117 N), MaxFire (132 N), Mersilene (89 N), RapidLoc A2 (108 N), CrossFix (95 N), and Ultrabraid (126 N) (P < .05). Ultrabraid suture showed significantly more elongation over 500 cycles than the other repairs (P < .05). The principal failure mode associated with the single destructive pull (suture breakage) changed to pulling through the meniscus after cyclic loading for most devices. Knot slippage or device failure was seldom observed as the failure mode with these techniques.

CONCLUSIONS:

Self-adjusting, UHMWPE suture-containing meniscal repair devices (Ultra FasT-Fix, RapidLoc A2, and MaxFire) were comparable to the isolated UHMWPE-containing suture repairs on single-failure load testing. UHMWPE-containing suture repairs are stronger than braided polyester suture repairs, but pure UHMWPE suture (Ultrabraid) elongated more during cycling. Orthocord suture is significantly stronger than the other meniscal repair techniques after cyclic loading (P < .05).

CLINICAL RELEVANCE:

Meniscal repair techniques using UHMWPE containing sutures provide greater strength than earlier generations of meniscal repair techniques.

Comment in

PMID:
19732633
DOI:
10.1016/j.arthro.2009.03.020
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center