Format

Send to

Choose Destination
See comment in PubMed Commons below
Adv Appl Microbiol. 2009;69:99-132. doi: 10.1016/S0065-2164(09)69004-3.

Chapter 4: In vitro biofilm models: an overview.

Author information

1
School of Pharmacy and Pharmaceutical Sciences, The University of Manchester, Manchester, United Kingdom.

Abstract

Observing naturally occurring biofilms in situ or ex situ has revealed the wide distribution of sessile microbial communities. The ubiquity, variety and complexity of biofilms is now widely accepted by microbiologists. While they are associated with many beneficial functions such as nutrient cycling, bioremediation and colonization resistance, adverse effects including recalcitrance, their involvement in industrial fouling, contamination and infection have made biofilms a priority research topic. We know that most biofilms, other than within certain infections and laboratory flasks, are composed of multiple species and that there is arguably no unifying biofilm architecture. Biofilms do however share certain properties including the presence of gradients of nutrients, gasses and metabolic products, relatively increased cell density, deposition of extracellular polymeric substances and marked recalcitrance towards antimicrobial treatments. Much of our understanding of biofilm physiology and micro-ecology originates from experiments using in vitro biofilm models. Broadly speaking, such models may be used to replicate environmental conditions within the laboratory or to focus on selected variables such a growth rate or fluid flow, etc. This chapter provides an overview of some commonly used biofilm models including microtitre plate systems, flow cells, the constant depth film fermenter, annular reactors and the perfused biofilm fermenter. While perfused biofilm fermenters, in particular, enable growth rate to be controlled within thin, relatively homogenous, quasi steady-state biofilms through modulation of flow rate nutrient availability, other models provide representative modelling of in situ conditions where steady states may be uncommon.

PMID:
19729092
DOI:
10.1016/S0065-2164(09)69004-3
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center