Format

Send to

Choose Destination
Biol Rev Camb Philos Soc. 2009 Nov;84(4):637-52. doi: 10.1111/j.1469-185X.2009.00090.x. Epub 2009 Sep 2.

Ca2+/calmodulin-dependent transcriptional pathways: potential mediators of skeletal muscle growth and development.

Author information

1
Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, John Dalton Building, Oxford Road, Manchester, M1 5GD, UK. n.al-shanti@mmu.ac.uk

Abstract

The loss of muscle mass with age and disuse has a significant impact on the physiological and social well-being of the aged; this is an increasingly important problem as the population becomes skewed towards older age. Exercise has psychological benefits but it also impacts on muscle protein synthesis and degradation, increasing muscle tissue volume in both young and older individuals. Skeletal muscle hypertrophy involves an increase in muscle mass and cross-sectional area and associated increased myofibrillar protein content. Attempts to understand the molecular mechanisms that underlie muscle growth, development and maintenance, have focused on characterising the molecular pathways that initiate, maintain and regenerate skeletal muscle. Such understanding may aid in improving targeted interventional therapies for age-related muscle loss and muscle wasting associated with diseases. Two major routes through which skeletal muscle development and growth are regulated are insulin-like growth factor I (IGF-I) and Ca(2+)/calmodulin-dependent transcriptional pathways. Many reviews have focused on understanding the signalling pathways of IGF-I and its receptor, which govern skeletal muscle hypertrophy. However, alternative molecular signalling pathways such as the Ca(2+)/calmodulin-dependent transcriptional pathways should also be considered as potential mediators of muscle growth. These latter pathways have received relatively little attention and the purpose herein is to highlight the progress being made in the understanding of these pathways and associated molecules: calmodulin, calmodulin kinases (CaMKs), calcineurin and nuclear factor of activated T-cell (NFAT), which are involved in skeletal muscle regulation. We describe: (1) how conformational changes in the Ca(2+) sensor calmodulin result in the exposure of binding pockets for the target proteins (CaMKs and calcineurin). (2) How Calmodulin consequently activates either the Ca(2+)/calmodulin-dependent kinases pathways (via CaMKs) or calmodulin-dependent serine/threonine phosphatases (via calcineurin). (3) How calmodulin kinases alter transcription in the nucleus through the phosphorylation, deactivation and translocation of histone deacetylase 4 (HDAC4) from the nucleus to the cytoplasm. (4) How calcineurin transmits signals to the nucleus through the dephosphorylation and translocation of NFAT from the cytoplasm to the nucleus.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center