Send to

Choose Destination
Ann N Y Acad Sci. 2009 Aug;1171:421-7. doi: 10.1111/j.1749-6632.2009.04887.x.

Inhibitory mechanism of omega-3 fatty acids in pancreatic inflammation and apoptosis.

Author information

Department of Food and Nutrition, Brain Korea 21 Project, College of Human Ecology, Yonsei University, Seoul, Korea.


Oxidative stress is regarded as a major pathogenic factor in acute pancreatitis. Inflammation and apoptosis linked to oxidative stress has been implicated in cerulein-induced pancreatitis as an experimental model of acute pancreatitis. Recently, we found that reactive oxygen species mediate inflammatory cytokine expression and apoptosis of pancreatic acinar cells stimulated with cerulein. Omega-3 fatty acids show antioxidant action in various cells and tissues. In the present study, we investigated whether omega-3 fatty acids inhibit cytokine expression in cerulein-stimulated pancreatic acinar cells and whether omega-3 fatty acids suppress apoptotic cell death in pancreatic acinar cells exposed to hydrogen peroxide. We found that omega-3 fatty acids, such as docosahexaenoic acid (DHA) and alpha-linolenic acid (ALA), suppressed the expression of inflammatory cytokines (IL-1beta, IL-6) and inhibited the activation of transcription factor activator protein-1 in cerulein-stimulated pancreatic acinar cells. DHA and ALA inhibited DNA fragmentation, inhibited the decrease in cell viability, and inhibited the expression of apoptotic genes (p53, Bax, apoptosis-inducing factor) induced by hydrogen peroxide in pancreatic acinar cells. In conclusion, omega-3 fatty acids may be beneficial for preventing oxidative stress-induced pancreatic inflammation and apoptosis by inhibiting inflammatory cytokine and apoptotic gene expression of pancreatic acinar cells.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center