Format

Send to

Choose Destination
See comment in PubMed Commons below
Philos Trans R Soc Lond B Biol Sci. 2009 Oct 12;364(1531):2819-32. doi: 10.1098/rstb.2009.0079.

Eye evolution: common use and independent recruitment of genetic components.

Author information

1
Department of Transcriptional Regulation, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4 CZ 14220, Czech Republic.

Abstract

Animal eyes can vary in complexity ranging from a single photoreceptor cell shaded by a pigment cell to elaborate arrays of these basic units, which allow image formation in compound eyes of insects or camera-type eyes of vertebrates. The evolution of the eye requires involvement of several distinct components-photoreceptors, screening pigment and genes orchestrating their proper temporal and spatial organization. Analysis of particular genetic and biochemical components shows that many evolutionary processes have participated in eye evolution. Multiple examples of co-option of crystallins, Galpha protein subunits and screening pigments contrast with the conserved role of opsins and a set of transcription factors governing eye development in distantly related animal phyla. The direct regulation of essential photoreceptor genes by these factors suggests that this regulatory relationship might have been already established in the ancestral photoreceptor cell.

PMID:
19720647
PMCID:
PMC2781861
DOI:
10.1098/rstb.2009.0079
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center