Format

Send to

Choose Destination
See comment in PubMed Commons below
Circ Cardiovasc Genet. 2009 Jun;2(3):220-8. doi: 10.1161/CIRCGENETICS.108.792499.

Quantitative trait locus analysis of neointimal formation in an intercross between C57BL/6 and C3H/HeJ apolipoprotein E-deficient mice.

Author information

1
Department of Radiology, University of Virginia, Charlottesville, VA 22908, USA.

Abstract

BACKGROUND:

Inbred mouse strains C57BL/6J (B6) and C3H/HeJ (C3H) exhibit marked differences in neointimal formation after arterial injury when deficient in apolipoprotein E (apoE(-/-)) and fed a Western diet. Quantitative trait locus (QTL) analysis was performed on an intercross between B6.apoE(-/-) and C3H.apoE(-/-) mice to determine genetic factors contributing to the phenotype.

METHODS AND RESULTS:

Female B6.apoE(-/-) mice were crossed with male C3H.apoE(-/-) mice to generate F(1)s, which were intercrossed to generate 204 male F(2) progeny. At 10 weeks of age, F(2)s underwent endothelium denudation injury to the left common carotid artery. Mice were fed a Western diet for 1 week before and 4 weeks after injury and analyzed for neointimal lesion size, plasma lipid and MCP-1 levels. One significant QTL, named Nih1 (61cM, LOD score: 5.02), on chromosome 12 and a suggestive locus on chromosome 13 (35cM, LOD: 2.67) were identified to influence lesion size. One significant QTL on distal chromosome 1 accounted for major variations in plasma non-HDL cholesterol and triglyceride levels. Four suggestive QTLs on chromosomes 1, 2, and 3 were detected for circulating MCP-1 levels. No correlations were observed between neointimal lesion size and plasma lipid levels or between lesion size and plasma MCP-1 levels.

CONCLUSIONS:

Neointimal formation is controlled by genetic factors independent of those affecting plasma lipid levels and circulating MCP-1 levels in the B6 and C3H mouse model.

KEYWORDS:

Mice; Neointimal hyperplasia; Quantitative trait locus; Restenosis

PMID:
19718279
PMCID:
PMC2733792
DOI:
10.1161/CIRCGENETICS.108.792499
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center