Format

Send to

Choose Destination
J Am Chem Soc. 2009 Sep 23;131(37):13516-22. doi: 10.1021/ja905368d.

Oxalate-bridged bimetallic complexes {NH(prol)3}[MCr(ox)3] (M = Mn(II), Fe(II), Co(II); NH(prol)3(+) = tri(3-hydroxypropyl)ammonium) exhibiting coexistent ferromagnetism and proton conduction.

Author information

1
Department of Chemistry, Faculty of Science, Kyushu University, Hakozaki 8-10-1, Higashi-ku, Fukuoka 812-8581, Japan. ok134@chem.kyushu-univ.jp

Abstract

The oxalate-bridged bimetallic complexes {NH(prol)(3)}[M(II)Cr(III)(ox)(3)] (M(II) = Mn(II), Fe(II), Co(II)) with hydrophilic tri(3-hydroxypropyl)ammonium (NH(prol)(3)(+)) were prepared by a new synthetic procedure, and the effects of the NH(prol)(3)(+) ion upon the structure, magnetism, and electrical conduction were studied. An X-ray crystallographic study of the MnCr dihydrate, {NH(prol)(3)}[MnCr(ox)(3)].2H(2)O, was performed. Crystal data: hexagonal, P6(3), a = b = 9.3808(14) A, c = 15.8006(14) A, Z = 2. The structure comprises oxalate-bridged bimetallic layers interleaved by NH(prol)(3)(+) ions. The ions assume a tripodal configuration and are hydrogen bonded to the bimetallic layers together with water molecules, giving rise to a short interlayer separation (7.90 A) and unsymmetrical faces to the bimetallic layer. Cryomagnetic studies demonstrate ferromagnetic ordering with transition temperature of 5.5 K for the MnCr complex, 9.0 K for the FeCr complex, and 10.0 K for the CoCr complex. The interlayer magnetic interaction is negligibly weak in all of the complexes despite the short interlayer separation. A slow magnetization is observed in all the complexes. This is explained by spin canting associated with the unsymmetrical feature of the bimetallic layer. The complexes show proton conduction of 1.2 x 10(-10) to 4.4 x 10(-10) S cm(-1) under 40% relative humidity (RH) and approximately 1 x 10(-4) S cm(-1) under 75% RH. On the basis of water adsorption/desorption profiles, the conduction under 40% RH is mediated through the hydrogen-bonded network formed by the bimetallic layer, NH(prol)(3)(+) ions, and water molecules (two per MCr). Under 75% RH, additional water molecules (three per MCr) are concerned with the high proton conduction. This is the first example of a metal complex system exhibiting coexistent ferromagnetism and proton conduction.

PMID:
19715318
DOI:
10.1021/ja905368d

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center