Send to

Choose Destination
Scand J Immunol. 2009 Sep;70(3):256-63. doi: 10.1111/j.1365-3083.2009.02295.x.

Mycobacterium tuberculosis entry into mast cells through cholesterol-rich membrane microdomains.

Author information

Unidad de Investigación Médica de Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI (CMN-XII), Instituto Mexicano del Seguro Social (IMSS), Mexico City.


Cholesterol-enriched membrane microdomains (lipid rafts) play a role in the uptake of many pathogens. Mycobacteria are one of the intracellular pathogens that utilize lipid rafts in order to invade both phagocytic and non-phagocytic cells. However, the mechanism of Mycobacterium tuberculosis uptake by mast cell is not known. To address this issue, we investigated the interaction of M. tuberculosis (H37Rv strain) with mast cells. Confocal microscopy showed that interaction of mycobacterium with mast cell resulted in changes in the mast cell surface, with formation of pseudopod-like structure and activation with visibly extruded granules. Moreover, infection of mast cells with Mycobacteria induced cholesterol accumulation at the site of bacterial entry and around intracellular mycobacteria. Disruption of mast cells lipid rafts by cholesterol depletion markedly inhibited the mycobacterium entry. Intracellular multiplication of M. tuberculosis within mast cells was also observed. Overall, our results indicate that M. tuberculosis employs a cholesterol-dependent pathway to infect mast cells, which leads to degranulation and mast cell morphological changes. These results suggest that although mast cells are capable to respond to M. tuberculosis infection, entry of mycobacterium through lipid rafts may allow replication within mast cells.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center