Send to

Choose Destination
J Neurosci Res. 1990 Mar;25(3):263-80.

Spiny neurons lacking choline acetyltransferase immunoreactivity are major targets of cholinergic and catecholaminergic terminals in rat striatum.

Author information

Department of Neurology and Neuroscience, Cornell University Medical College, New York, NY 10021.


The ultrastructural substrate for functional interactions between intrinsic cholinergic neurons and catecholaminergic afferents to the caudate-putamen nucleus and nucleus accumbens septi (NAS) was investigated immunocytochemically. Single sections of glutaraldehyde-fixed rat brain were processed 1) for the immunoperoxidase labeling of a rat monoclonal antibody against the acetylcholine-synthesizing enzyme choline acetyltransferase (CAT) and 2) for the immunoautoradiographic localization of a rabbit polyclonal antiserum against the catecholamine-synthesizing enzyme tyrosine hydroxylase (TH). The ultrastructural morphology and cellular associations did not significantly differ in the caudate-putamen versus NAS. Immunoperoxidase reaction for CAT versus NAS. Immunoperoxidase reaction for CAT was seen in perikarya, dendrites, and terminals, whereas immunoautoradiography for TH was in terminals. The perikarya and dendrites immunolabeled for CAT were large, sparsely spiny, and postsynaptic mainly to unlabeled axon terminals. Only 2-3% of the CAT-labeled terminals (n = 136) and less than 1% of the TH-labeled terminals (n = 86) were apposed to, or formed synapses with, perikarya or dendrites immunoreactive for CAT. Most unlabeled and all labeled terminals formed symmetric synapses. In the same sample, 18% of the CAT and 16% of the TH-labeled terminals were directly apposed to each other. Unlabeled dendritic shafts received the major (40% for CAT versus 23% for TH) synaptic input from cholinergic terminals, while unlabeled spines received the major (47% for TH versus 23% for CAT) synaptic input from catecholaminergic terminals. Neither the unlabeled dendrites or spines received detectable convergent input from CAT and TH-labeled terminals. Thirteen percent of the CAT-labeled and 14% of TH-labeled terminals were in apposition to unlabeled terminals forming asymmetric, presumably excitatory, synapses with unlabeled dendritic spines. We conclude that in both the caudate-putamen and NAS cholinergic and catecholaminergic terminals 1) form symmetric, most likely inhibitory, synapses primarily with non-cholinergic neurons, 2) differentially synapse on shafts or spines of separate dendrites, and 3) have axonal appositions suggesting the possibility of presynaptic physiological interactions. These results support the hypothesis that the cholinergic-dopaminergic balance in striatal function may be mediated through inhibition of separate sets of spiny projection neurons with opposing excitatory and inhibitory functions.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center