Send to

Choose Destination
Neurobiol Dis. 2009 Nov;36(2):374-83. doi: 10.1016/j.nbd.2009.08.003. Epub 2009 Aug 20.

Disruption of Rab11 activity in a knock-in mouse model of Huntington's disease.

Author information

Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.


The Huntington's disease (HD) mutation causes polyglutamine expansion in huntingtin (Htt) and neurodegeneration. Htt interacts with a complex containing Rab11GDP and is involved in activation of Rab11, which functions in endosomal recycling and neurite growth and long-term potentiation. Like other Rab proteins, Rab11GDP undergoes nucleotide exchange to Rab11GTP for its activation. Here we show that striatal membranes of HD(140Q/140Q) knock-in mice are impaired in supporting conversion of Rab11GDP to Rab11GTP. Dominant negative Rab11 expressed in the striatum and cortex of normal mice caused neuropathology and motor dysfunction, suggesting that a deficiency in Rab11 activity is pathogenic in vivo. Primary cortical neurons from HD(140Q/140Q) mice were delayed in recycling transferrin receptors back to the plasma membrane. Partial rescue from glutamate-induced cell death occurred in HD neurons expressing dominant active Rab11. We propose a novel mechanism of HD pathogenesis arising from diminished Rab11 activity at recycling endosomes.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center