Format

Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2009 Aug 21;4(8):e6711. doi: 10.1371/journal.pone.0006711.

Visualization of shared genomic regions and meiotic recombination in high-density SNP data.

Author information

1
Program in Human Genetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America.

Abstract

BACKGROUND:

A fundamental goal of single nucleotide polymorphism (SNP) genotyping is to determine the sharing of alleles between individuals across genomic loci. Such analyses have diverse applications in defining the relatedness of individuals (including unexpected relationships in nominally unrelated individuals, or consanguinity within pedigrees), analyzing meiotic crossovers, and identifying a broad range of chromosomal anomalies such as hemizygous deletions and uniparental disomy, and analyzing population structure.

PRINCIPAL FINDINGS:

We present SNPduo, a command-line and web accessible tool for analyzing and visualizing the relatedness of any two individuals using identity by state. Using identity by state does not require prior knowledge of allele frequencies or pedigree information, and is more computationally tractable and is less affected by population stratification than calculating identity by descent probabilities. The web implementation visualizes shared genomic regions, and generates UCSC viewable tracks. The command-line version requires pedigree information for compatibility with existing software and determining specified relationships even though pedigrees are not required for IBS calculation, generates no visual output, is written in portable C++, and is well-suited to analyzing large datasets. We demonstrate how the SNPduo web tool identifies meiotic crossover positions in siblings, and confirm our findings by visualizing meiotic recombination in synthetic three-generation pedigrees. We applied SNPduo to 210 nominally unrelated Phase I / II HapMap samples and, consistent with previous findings, identified six undeclared pairs of related individuals. We further analyzed identity by state in 2,883 individuals from multiplex families with autism and identified a series of anomalies including related parents, an individual with mosaic loss of chromosome 18, an individual with maternal heterodisomy of chromosome 16, and unexplained replicate samples.

CONCLUSIONS:

SNPduo provides the ability to explore and visualize SNP data to characterize the relatedness between individuals. It is compatible with, but distinct from, other established analysis software such as PLINK, and performs favorably in benchmarking studies for the analyses of genetic relatedness.

PMID:
19696932
PMCID:
PMC2725774
DOI:
10.1371/journal.pone.0006711
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center