Send to

Choose Destination
See comment in PubMed Commons below
Mol Cancer Ther. 2009 Aug;8(8):2183-92. doi: 10.1158/1535-7163.MCT-08-1203. Epub 2009 Aug 11.

Three-kinase inhibitor combination recreates multipathway effects of a geldanamycin analogue on hepatocellular carcinoma cell death.

Author information

  • 1Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.


Multitarget compounds that act on a diverse set of regulatory pathways are emerging as a therapeutic approach for a variety of cancers. Toward a more specified use of this approach, we hypothesize that the desired efficacy can be recreated in terms of a particular combination of relatively more specific (i.e., ostensibly single target) compounds. We test this hypothesis for the geldanamycin analogue 17-Allylamino-17-demethoxygeldanamycin (17AAG) in hepatocellular carcinoma cells, measuring critical phosphorylation levels that indicate the kinase pathway effects correlating with apoptotic responsiveness of the Hep3B cell line in contrast to the apoptotic resistance of the Huh7 cell line. A principal components analysis (PCA) constructed from time course measurements of seven phosphoprotein signaling levels identified modulation of the AKT, IkappaB kinase, and signal transducer and activator of transcription 3 pathways by 17AAG treatment as most important for distinguishing these cell-specific death responses. The analysis correctly suggested from 17AAG-induced effects on these phosphoprotein levels that the FOCUS cell line would show apoptotic responsiveness similarly to Hep3B. The PCA also guided the inhibition of three critical pathways and rendered Huh7 cells responsive to 17AAG. Strikingly, in all three hepatocellular carcinoma lines, the three-inhibitor combination alone exhibited similar or greater efficacy to 17AAG. We conclude that (a) the PCA captures and clusters the multipathway phosphoprotein time courses with respect to their 17AAG-induced apoptotic responsiveness and (b) we can recreate, in a more specified manner, the cellular responses of a prospective multitarget cancer therapeutic.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center