Format

Send to

Choose Destination
See comment in PubMed Commons below
Circ J. 2009 Sep;73(9):1561-7. Epub 2009 Aug 10.

From the ryanodine receptor to cardiac arrhythmias.

Author information

1
Manchester Academic Health Science Centre, The University of Manchester, Core Technology Facility, Manchester, UK. Eisner@man.ac.uk

Abstract

Cardiac contraction is activated by an increase of intracellular calcium concentration ([Ca(2+)](i)), most of which comes from the sarcoplasmic reticulum (SR) where it is released, via the ryanodine receptor (RyR), in response to Ca(2+) entering the cell on the L-type Ca(2+) current. This phenomenon is termed Ca(2+)-induced Ca(2+) release (CICR). However, under certain circumstances, the SR can become overloaded with Ca(2+) and once a threshold SR Ca(2+) content is reached Ca(2+) is released spontaneously. Such spontaneous Ca(2+) release from the SR propagates as a Ca(2+) wave by CICR. Some of the Ca(2+) released during a wave is removed from the cell on the electrogenic Na - Ca exchanger resulting in depolarization. This is the cellular mechanism producing delayed afterdepolarizations and is common to those arrhythmias produced by digitalis toxicity and right ventricular outflow tract tachycardia. More recently it has been suggested that arrhythmogenic Ca(2+) waves can also occur if the properties of the RyR are altered, resulting in increase of RyR open probability, for example by phosphorylation. However, in this review experimental evidence will be presented to support the view that such arrhythmias still require a threshold SR Ca(2+) content to be exceeded and that this threshold is decreased by increasing RyR open probability.

PMID:
19667488
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
    Loading ...
    Support Center